如今,在战争区域(如阿富汗和伊拉克)进行的“不对称作战”使游击战形式的叛乱与传统武装部队及武装部队保护的人民相互进行较量。袭击事件一般发生在人口比较密集的地区,使战斗人员和非战斗人员均身处危险之中。装甲系统在加固军用及商用运输工具和建筑上有很大的需求。战区建筑主要包括:战士部署庇护所、政府建筑及个人房屋;对战区建筑构成威胁的事物包括:火箭推进榴弹(RPGs)、迫击炮、小型武器、爆炸装置(IEDs)、爆炸成型弹丸(EFPs)以及爆炸碎片(如:玻璃碎片)

    公路战士(Road warriors)

    军用轻型战术车辆(LTVs) 以及非战斗人员提供的运输工具,这些非前线军事活动使用的装置也越来越多地处在战火之下。美国所有兵役部队都制定了使用“B-kits”型装甲或适用于战场车辆上的装甲为军用轻型战术车辆(LTVs)“安装装甲”的计划。最近,原始设备制造商(OEM)还为这些运输工具设计了另外一种“A-cab”型装甲。与此同时,为部署部队运送物资(如:燃料、食物和水)的商用运输工具上也安装了“B-Kits”型装甲。

    然而,装甲增加了运输工具的重量,影响了机动性、燃油效率及维护成本。AGY(位于南卡罗来纳州艾肯)结构玻璃纤维供应商新产品研发部经理David Fecko指出:“目前,一辆运载十吨物资的支援卡车,其所需的装甲重为两吨,这样一来,卡车的运输效率就会减少20%。复合材料装甲是消除这一重量障碍的最好方法。”

    位于美国北卡罗来纳州的Vector策略公司是一家专门从事军用装甲采购市场评估及预测的咨询机构。Vector公司的总裁Marcia Price先生指出:“2009年至2015年间,美国国防部将为250公吨地面运输装甲投入160亿美元的资金。在该计划涉及的所有原材料中,复合材料占的比重在这8年中将会不断增加,从现在的15%增加到2015年的25%,而其余资金将用于购买钢铁、铝、钛、陶瓷及透明装甲(玻璃或透明聚合物)。

    纤维具有吸收能量的作用

    高速弹药及简易爆炸装置爆炸时会释放巨大的直接作用力,这样一来,就需要由装甲来分散冲击能量,并使背面免受碎片或残片地袭击。美国军事研究实验室(位于美国马里兰州阿伯丁试验场)武器材料司令部材料应用组的资深材料工程师Dana Granville发表评论说:“复合材料在吸收动能方面具有持续、可控制的性能。与传统均质钢板相比,复合材料在增强保护功能的同时还减轻了重量,是软装甲和硬装甲领域“使能技术”的代表。”芳纶纤维是最早最成功复合材料装甲系统的原材料。

    20年前,车辆开始仅使用杜邦保护系统(DuPont Protection Systems)公司生产的凯芙拉芳纶纤维/酚醛基体材料的板材。最初该板材是被用在布莱德雷式战斗车上,今天成千上万的高机动多功能轮式运输车和防地雷反伏击车(MRAP/MATVs)仍在使用这种复合材料。2009年5月,近1.4万辆装甲防地雷反伏击车(MRAP)入驻伊拉克和阿富汗。

防地雷反伏击车(MRAP)

    杜邦(DuPont)北美弹道学技术带头人Tucker Norton在报告中说道:“在最近进行的独立测试中,与钢板相比,由凯芙拉芳纶纤维(纤维B)制成的正交单向板材在反动能和射孔弹方面表现出更为卓越的保护性能,这在很大程度上是由减少碎片的散射来实现的。”

    值得一提的是,杜邦公司(DuPont)今年九月份在美国特拉华州威尔明顿建立一个新装甲技术中心,另外还会投资5亿多美元在南加利福尼亚州建立一个凯芙拉芳纶纤维(纤维B)工厂。

    位于荷兰阿纳姆的帝人芳纶(TEIJIN ARAMID BV)公司以其特瓦隆(Twaron)品牌为反导弹应用装置生产PAN基碳纤维,最近,该公司还生产用于制造硬装甲的原材料-LFT HB1。

    霍尼韦尔特性材料公司(位于美国新泽西州莫里斯敦)为硬装甲应用装置生产超高分子量聚乙烯(HMPE)纤维和卷状光谱盾层压材料。2007年,霍尼韦尔特性材料公司(Honeywell Specialty Materials)推出了由Spectra S3000超高分子量聚乙烯(HMPE)纤维制造的光谱盾II (Spectra Shield II),并表示其高性能不仅是纤维基化学性质的体现,而且还应归功于其工艺技术,该工艺可以将纤维沿平行方向凝固在一起。经先进的聚乙烯基浸渍后的Spectra S3000纤维使光谱盾II (Spectra Shield II)装甲在地面车辆,飞机及防弹衣中的反导弹性能提高了20%。

    霍尼韦尔(Honeywell)公司高级碳纤维和复合材料部门装甲工业的技术主管Lori Wagner解释说,“在过去,硬装甲客户不得不在硬装甲的硬度与运输工具的性能之间做出选择。如果反导弹材料对最终产品的坚固性无利,那么必将需要其它材料来弥补这一缺陷,这样一来定会增加产品的重量。Lori Wagner坦率地指出:霍尼韦尔公司(Honeywell)改进了其用于生产光谱高分子量聚乙烯(HMPE)纤维的专利冻胶纺丝工艺。

    “我们在纤维及强化处理技术上做出的创新与精确的计算机模拟技术结合在一起,使我们能够挖掘混合材料的优点,并最大限度的利用光谱独特的性能。这最终会影响到复合材料是否能作为装甲中钢铁的替代物而被大家接受。”

    另外一种用于制造装甲的高级聚乙烯(PE)纤维是由位于荷兰的帝斯曼迪尼玛集团(DSM Dyneema)生产的。据报道帝斯曼生产的导弹材料,迪尼玛HB80和HB26纤维用在硬装甲板中具备更强的坚固性和保护功能,与关替代材料相比,重量更轻。用在警车中的迪尼玛板材每平方米重为5千克,迪尼玛板材与钢和陶瓷受力面混合在一起可使面密度减少75%。

    另外,帝斯曼(DSM)表示:聚乙烯增强板更易根据产品形状进行切割。据报道,这种板材具有更好的防水、抗化学及抗紫外线功能,与其它材料制成的板材相比,耐用性更强。

    帝斯曼迪尼玛(DSM Dyneema)集团下属机构生命防护公司(Life Protection Americas)企业发展部的总裁David Cordova解释说:“装甲上使用的帝斯曼迪尼玛无纬布(Dyneema UD)产品的纤维的单向性结构,使来自子弹或其它威胁性事物的作用力产生的能量沿着纤维方向转移,与通过传统织物转移能量相比,具有更高的效率,更快的速度。”

    Cordova表示:“这是因为织物中纱线的吸收能力在交叉点处被削弱了。交叉点处的纤维起褶皱后并不能吸收来自子弹或其它发射物的作用力产生的冲击能量。”

    防地雷反伏击车(MRAP)装甲还用到了迪尼玛超高分子量聚乙烯(UHMWPE)纱带及英国宇航(BAE)系统Tensylon高性能材料公司(位于美国俄亥俄州辛辛那提)提供的复合材料产品。Tensylon采用ARL计划研发出的专用于固体挤压工艺制造而成的。据报道,与芳族聚酰胺纤维或超高相对分子量聚乙烯(UHMWPE)冻胶纤维相比,Tensylon不仅质量及轻,而且具有更高的抗蠕变性、拉伸模量及强度。

    今年年初,英国宇航系统(BAE)公司接到了美国陆军价值260万美元的订单,为其重型设备运输车(HET)提供由Tensylon制成的装甲。重型设备运输车(HET)主要用来为战区运送主战坦克。

    作为多用途运输车辆及防地雷反伏击车(MRAP)装甲的原材料,玻璃纤维在价格和重量方面与芳纶纤维及陶瓷纤维形成竞争局势。用在防地雷反伏击车(MRAP)装甲上的玻璃纤维的类型有:S-1、S-2和S-3。

    AGY公司的Fecko发表评论说:“我相信我们可以提高S系列玻璃纤维的拉伸强度,S-玻璃纤维具有超长的强度,其原始拉伸强度为4890兆帕,几乎是钢拉伸强度的10倍,但其密度却仅是钢密度的三分之一。遗憾的是,在将原始玻璃纤维加工成复合材料的过程中,玻璃纤维的大部分强度会消失掉。我们所面临的挑战就是在生产玻璃纤维并将其转变成复合材料装甲板的过程中,不减少其极佳的原始性能。”

    去年,AGY公司推出了两种新玻璃纤维用于制造装甲,即:Featherlight 和Quicksilver。与标准S-2玻璃纤维相比,Featherlight在保护性能上有5%-10%的提高;与E-玻璃纤维相比,Quicksilver质量更轻且价格更具竞争力。Fecko表示:“AGY正与ARL合作研发新型玻璃纤维,我希望2010年我们能研发出新的产品系列。“
位于英国德比郡先进复合材料公司(ACG)市场销售部的总监Jon Stowell回忆说:早在20世界80年代,先进复合材料公司(ACG)就开始向北爱尔兰自治区路虎公司生产的车辆提供制造装甲的S-2Glass预浸材料或酚醛树脂预浸材料。

    “在那之前,先进复合材料公司(ACG)已将该预浸系统用在作战头盔中。该预浸系统使保护头部免受碎片袭击与头盔后面变形,头盔的耐用性与成本之间达到最佳平衡点。”“今天,据相关要求,那些用在中东战场上的导弹也将采用S-2 Glass或酚醛树脂与陶瓷板结合物作为制造装甲的一种原材料。”

    Jon Stowel表示:“先进复合材料公司(ACG)希望2010年其在导弹市场的销售额会有25%的增长,先进复合材料公司(ACG)将与其客户合作共同研发新方案,他们将见证使用低成本复合材料加工技术(如无需高压釜处理工艺及模压成型工艺)制造结构性装甲的方案。采用先进复合材料公司(ACG)预浸料制成的装甲板可将库加尔(Cougar) 4X4s变形成为防地雷反伏击(MRAP)Ridgbacks。Ridgbacks将供位于中东地区的英国军队使用。

    芳香族聚酰胺纤维

    位于南卡罗来纳州辛普森维尔的Innegrity公司生产的Innegra S高模数聚丙烯纤维(HMPP)是一种新型纱线。与仅以芳香族聚酰胺纤维为原料相比,添加了Innegra S的装甲板质量更轻,耐用性更强。采用Innegra S与芳纶纤维混合物制造硬装甲可达到更好的效果,不仅可以降低每平方米板材的总成本,而且还提高了装甲的反导弹保护能力。测试表明:这一模压成型的混合板中含有Innegra S 2800-细纤维。

    该混合板材与全芳纶纤维结构具有同等的性能,这表明使用Innegra S和芳纶纤维(成分比率为:75:25)制造板材可达到最优的价格,最好的性能。Innegrity公司首席执行官Brian Morin指出:生产的灵活性是公司为客户在制造方面提供了有利条件。

    Brian Morin声称:“Innegrity公司会根据客户需求逐渐扩大生产力。以美国军方为例,我们可以加大生产能力,使其超过他们目前的需求量,并在和平时期停止生产。事实上,这在很大程度上取决于政府的需求。政府每年对高模数聚丙烯纤维(HMPP)的需求量仅是对芳纶纤维需求量的十分之一。”

    在热塑性和热固性基质中, Innegra S也可与玻璃纤维及碳纤维共溶。Innegra S与低密度热塑性薄膜结合在一起时,其低密度(0.84克每立方米)不仅提供了极轻的质量而且还具有很强的硬度。Brian Morin表示“Innegra S或碳混合物用在反导弹板中,除了可节约成本,还使得板材的加德纳抗冲击性提高了38%,冲击强度提高了77%。

    位于美国亚利桑那州坦佩的技术纤维有限公司(TechFiber)将芳纶纤维与Innegra S高模数聚丙烯(HMPP)纤维结合在一起来制造T-Flex H和I-Flex H单向性织物,该织物是制造硬装甲的原材料。采用专混合板材成型的专用工艺将所有织物与高性能热塑性薄膜结合在一起。  技术纤维有限公司(TechFiber)总经理Miles Rothman讲到:混合织物在反导弹复合板中的性能在装甲市场上受到的关注会越来越多。反导弹材料市场需求的不断增加促使我公司投入300万美元资金来扩大生产力,预计该投资将于2010年开始。

    与此同时,位于美国南卡罗来纳州斯帕坦堡的美肯利(Milliken)公司表示,他们公司提供的Tegris复合材料,与芳族聚酰胺纤维增强复合材料相比,具有更优越的能量吸收性能和更强的坚硬度。该复合材料展示了纤维及聚丙烯(PP)基质的特性。

    对以Tegris复合材料为原材料的几辆运输装置及爆炸减轻板(美肯利公司与ARL合作项目)的测试表明,Tegris表现出的性能与设计的相同。Tegris可吸收陶瓷或钢背板后的冲击能量。Tegris以其合理的价格、轻质的重量成为军方客户优先选择的产品。Brockman坚信,热塑性复合材料将有可能提高其相对于现用反导弹材料的市场占有率。

本文英文原文见世界复合材料      复材在线编译      有删改

    In war zones, such as Iraq and Afghanistan, “asymmetric warfare” pits guerrilla-style insurgencies against conventional armed forces and the civilians they protect. Attacks often come at close quarters in civilian-populated areas, putting both combatants and noncombatants in harm’s way. Armor systems are in great demand to harden both military and commercial vehicles and buildings, ranging from soldier deployment shelters and government buildings to private homes, against a formidable array of threats: rocket-propelled grenades (RPGs), mortars, armor-penetrating sniper fire, small-arms weaponry, improvised explosive devices (IEDs), explosively formed projectiles (EFPs), and blast debris, such as glass fragments (see international threat-level ratings chart, at right).

    Road warriors

    Military light tactical vehicles (LTVs) and noncombatant support vehicles that were not designed for front-line action are increasingly under fire, especially as targets of IEDs. In the U.S. each military service branch has “uparmoring” programs for its LTVs, using “B-Kits,” or armor applied to vehicles already fielded, and more recently, “A-cab” armor, designed into vehicles by the OEM. At the same time, commercial vehicles that deliver fuel, food and water to deployed troops are also gearing up with B-Kit packages.
Armor, however, adds weight, negatively affecting vehicle maneuverability, fuel efficiency and maintenance. David Fecko, new business development manager for structural glass fiber supplier AGY (Aiken, S.C.) points out that “a support truck that carries 10 tons of supplies and now requires 2 tons of additional armor will have its transport effectiveness reduced by 20 percent. Composite armor is one of the best ways to counteract this weight penalty.”

    So good, in fact, that Marcia Price, president of Vector Strategy (Southern Pines, N.C.), a consulting firm that assesses the military armor procurement market and issues forecasts, projects that the U.S. Department of Defense will spend $16 billion (USD) on 550 million lb (250 metric tonnes) of ground vehicle armor between 2009 and 2015. Of that total material, composites content in these programs is likely to go up from 15 percent today to 25 percent over the eight-year span, with the balance comprising steel, aluminum, titanium, ceramics, and transparent (glass or clear polymer) armor.

    Force-absorbing fibers

    The blunt force impact of high-velocity ammunition and IED blasts require that armor dissipate the initial shock wave-energy and also stop and contain back-surface fragmentation (“frag”) or spall. Dana Granville, senior materials engineer for the Materials Applications Branch of the Weapons and Materials Research Directorate at the U.S. Army Research Laboratory (ARL, Aberdeen Proving Ground, Md.), observes that “composites do an excellent job of providing consistent, controlled absorption of kinetic energy. Compared to baseline rolled homogenous steel, composites improve protection while reducing areal weight and, as such, represent an enabling technology in both soft and hard armor.”

    Among the earliest and most successful composite armor systems are those reinforced with aramid fiber. Vehicle applications using DuPont Protection Systems’ (Richmond, Va.) Kevlar aramid fiber/phenolic matrix panels began 20 years ago on Bradley Fighting Vehicles and continue today in thousands of Humvees and mine-resistant, armor-protected all-terrain vehicles (MRAP/MATVs). As of July 2009, nearly 14,000 armored MRAP vehicles have been fielded in Iraq and Afghanistan. Models fitted with Kevlar-based armor include Buffalo, Cougar (opening photo), Maxx-Pro, RG-33 and Ridgback (see photo, at right). “Under recent independent testing, cross-plied unidirectional panels made with Kevlar demonstrated excellent protection against kinetic-energy and shaped-charge threats, such as RPGs, in large part by reducing the spread of spall vs. steel alone,” reports Tucker Norton, DuPont’s North American ballistics technology leader. “Additionally, Kevlar does not rely on delaminable claddings for flame-resistance protection.” Notably, the company announced a new Armor Technology Center in Wilmington, Del., in September, and is investing more than $500 million to build a new Kevlar manufacturing facility in South Carolina. 

    TEIJIN ARAMID BV (Arnhem, the Netherlands) also manufactures para-aramid fiber for antiballistic applications under its Twaron brand name, most recently, its LFT HB1 product for hard armor.
Honeywell Specialty Materials (Morristown, N.J.) produces Spectra high-modulus polyethylene (HMPE) fiber and Spectra Shield four-layer laminate in roll form for hard armor applications. The supplier launched Spectra Shield II in 2007, with its Spectra S3000 HMPE fiber, and credits its performance not only to fiber backbone chemistry, but also to a processing strategy that bonds the fiber in parallel strands. Impregnated with an advanced PE matrix, Spectra S3000 fibers help boost ballistic properties in Spectra Shield II laminates by more than 20 percent in armor for ground vehicles, as well as aircraft and body armor. Last year, Spectra Shield II SR-3130 was introduced to offer higher rigidity properties in armor applications.
Lori Wagner, armor industry technical leader for Honeywell Advanced Fibers and Composites, explains that, in the past, hard armor customers had to choose between armor panel rigidity and vehicle performance. “If a ballistic material does not contribute to an end product’s rigidity,” she explains, “then other materials must compensate, and that can add more weight.” She also points directly to improvements made by Honeywell in its proprietary gel-spinning process used to manufacture Spectra HMPE fibers. “Innovations in our fiber and laminate processing techniques, combined with accurate computer modeling, are allowing us to exploit the benefits of combining materials and to make the most out of Spectra’s unique performance attributes. Ultimately, this is affecting acceptance of composites in armor as a replacement for steel.”

    Another source of advanced PE fibers used in armor is DSM Dyneema LLC (Heerlen, The Netherlands). Dyneema HB 26 and HB 80 fibers reportedly provide added rigidity and multiple-hit protection in hard armor panels, with less weight than alternative materials. Dyneema panels used in police vehicles can weigh less than 5 kg/m2 and, hybridized with steel or ceramic strike faces, reduce areal density by as much as 75 percent. Moreover, DSM says its PE-reinforced panels are more easily cut to conformable shapes, and they reportedly are more durable than panels made from other materials because Dyneema better resists moisture, chemicals and UV radiation.

    David Cordova, VP of business development for DSM Dyneema subsidiary Life Protection Americas (Stanley, N.C.), explains that in armor, the unidirectional configuration of the fibers in DSM’s Dyneema UD product allows the energy transferred from the impact of a bullet or other threat to be distributed axially along the fiber length much faster and more efficiently than that energy can be distributed through conventional woven fabrics. This is because the absorption power of the yarn in woven fabrics is diminished at the crossover points, where the fibers are crimped — these points reflect rather than absorb the shock waves of the impact, Cordova maintains. In armor panels made with Dyneema UD, the fibers are not crimped and, therefore, much more of the material, he says, is engaged in stopping a projectile.
Also used in MRAP armor are Tensylon ultrahigh-molecular-weight polyethylene (UHMWPE) tape and composite products from BAE Systems Tensylon HPM Inc. (Cincinnati, Ohio and Monroe, N.C.). Produced by a proprietary solid-state extrusion process developed in an ARL program, Tensylon reportedly combines extremely low weight with higher resistance to creep and higher tensile modulus and strength than aramids or gel-spun UHMWPEs.  Earlier this year, BAE Systems received a $2.6 million U.S. Army contract to apply armor made with Tensylon to heavy equipment transporter (HET) vehicles, which are used to move combat-loaded main battle tanks to and from the battlefield.

    Glass fiber is competing with aramid and ceramic fibers for cost and weight benefits in Humvee and MRAP armor in the form of AGY’s S-1, S-2 and S-3 Glass grades. “We believe there is an opportunity to improve the tensile strength of our S-Glass fibers,” observes AGY’s Fecko. “An S-Glass fiber is tremendously strong — pristine tensile strength is 4,890 MPa, nearly ten times the strength of steel and about one-third the density — but much of its strength can be lost in processing the virgin glass into a composite material. Our challenge is to manufacture glass fibers and convert them into composite armor panels without decreasing their best properties.”

    Last year, AGY introduced two new glass fibers for armor: Featherlight and Quicksilver. Compared to standard S-2 Glass, Featherlight offers a 5 to 10 percent increase in protection, and Quicksilver is a lighter weight yet cost-competitive fiber, compared to E-glass. Fecko says AGY is working with the ARL on a new glass fiber sizing “that we expect to result in a new family of products in 2010.”

     Jon Stowell, sales and marketing director for Advanced Composites Group Ltd. (ACG, Heanor, Derbyshire, UK) recalls that ACG supplied the S-2 Glass/phenolic prepreg used as early as the 1980s for armor on Land Rover vehicles operating in Northern Ireland. “Before then, ACG provided this prepreg system for combat helmets,” he adds, “because it offered the best balance of frag protection and backface deformation, durability and cost.” Today, he contends, those who specify ballistic requirements for Middle East conflicts are “drawing upon S-2 Glass/phenolic as an armor material of choice when combined with ceramic plates.”

    ACG expects up to 25 percent growth in its sales to the ballistics market in 2010. Says Stowell, “customers are approaching ACG to engage in collaborative development programs that will see the emergence of structural armor solutions utilizing low-cost composite manufacturing techniques, such as out-of-autoclave and compression molding.” Cougar 4X4s are being converted to MRAP Ridgbacks using armor panels made with ACG prepregs. Ridgbacks will be used by British troops in the Middle East.

    Alternatives to aramid

    New to the fray is Innegra S high-modulus polypropylene (HMPP) fiber, a product of Innegrity LLC (Simpsonville, S.C.). Innegra S is engineered for lighter weight and greater durability properties in armor panels than can be had with aramid fiber alone.

    Innegra S has shown positive results in hybridization with aramid fibers in rigid armor by delivering a high level of ballistic protection at a lower total cost per panel. In testing, a compression-molded hybrid panel that incorporated Innegra S 2800-denier fiber was impacted with a .44 magnum bullet. The panel’s performance equaled that of an all-aramid construction, suggesting that for optimum price/performance, panels could use a 75:25 ratio of Innegra S to aramid fiber.

    Company CEO Brian Morin cites flexible production volume as a manufacturing advantage his company provides to customers. “Innegrity can expand production capacity incrementally and based on demand. For the U.S. military, we can build capability beyond what is needed today, and turn that off during peacetime,” he claims. “This is due, in large part, to the fact that the capital required per pound for annual output of our HMPP fiber is about one-tenth that required for aramid fiber.”

    Innegra S also is compatible with glass and carbon fiber in thermoset and thermoplastic matrices. Its low density (0.84 g/cm³) provides very lightweight but strong composites when combined with low-density thermoplastic films. Morin says Innegra S/carbon hybridization in ballistic panels, in addition to cost savings, demonstrates 38 percent greater Gardner impact resistance and 77 percent greater Izod impact.
TechFiber LLC (Tempe, Ariz.) combines aramid and Innegra S HMPP fibers in its T-Flex H and I-Flex H unidirectional fabrics, developed for hard armor applications. The uni fabrics are bonded together with high-performance thermoplastic films under pressure in a patented process to form hybrid panels. TechFiber general manager Miles Rothman reports that the performance of the hybrid fabric, in composite ballistic panels that also might integrate a ceramic strike face, is attracting increasing attention among armor makers. Increased demand for ballistic materials is spurring a $3 million expansion of the company’s production facilities, starting in 2010.

    Meanwhile, Milliken & Co. (Spartanburg, S.C.) says it can provide energy absorption and stiffness comparable to that of aramid-reinforced composites, in its Tegris composite, which features fiber and matrix of PP. Sold to armor integrators in fabric or panel forms (P1200, P1400 and P4000), Tegris can be “tuned” or tailored to fulfill specific impact and stiffness requirements in single- or multilayer rigid panels. Eric Brockman, Milliken’s national sales manager, points out that “a single layer of Tegris is 0.005-inches [0.01-cm] thick and weighs only 0.2 lb/ft², allowing for rapid thickness build up in armor panels, depending upon the desired threat-level protection.”

    Testing in several vehicle platforms and in a project with ARL in blast mitigation panels has demonstrated that Tegris will exhibit engineered delamination, that is, delamination that occurs in predictable stages, absorbing impact waves behind a ceramic or steel strike face. With weight and cost bogies such a priority for military customers, Brockman believes thermoplastic options have a chance to raise the bar against incumbent materials.

      复材在线原创文章,转载请注明出处!